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Abstract 
Teflon materials such as PTFE and PFA are generally known 

to be chemical inert and thermally stable with low surface energy. 
They have been the favorite materials for a variety of applications, 
ranging from filler in photoreceptor to additive in toner to release 
layer in oil less fusing to overcoat in inkjet printhead.  In this 
work, we systematically investigate its wetting and adhesion 
properties using static and dynamic contact measurement 
techniques.  In addition to model liquids such as water and 
hexadecane, we also studied the wetting and adhesion 
performance with ink and toner.  Our results indicate PTFE, 
although, is highly hydrophobic, it is actually oleophilic and sticky 
towards traditional imaging materials.  In most applications in 
xerography and inkjet printing, being non-stick with low adhesion 
is paramount. The requirement of a high static contact angle may 
be secondary.  Here we also report the fabrication of a 
superoleophobic model surface by photolithographic technique 
and superior anti-offset performance was demonstrated.  The need 
of easy clean, non-stick surfaces for future xerographic and inkjet 
printers is evident. 

Introduction  
Digital color printers and presses are complex 

electromechanical devices that put marks on papers.  Traditional 
approaches to design and optimize these devices have primarily 
been focused on the electrical and mechanical properties.  Print 
surfaces with custom-made surface properties are critical and are 
usually the after thoughts.  We believe that designer surfaces with 
controlled wetting or de-wetting properties or adhesion properties 
would be the performance differentiator for future engines.  
Features, such as easy-clean, self-clean in certain components, or 
offset free in fusing would be considered as a breakthrough.  To 
date, Teflon materials have been very popular due to its 
hydrophobicity, low surface energy, anti-wetting properties as well 
as chemical inertness and high thermal stability. 

Generally water contact angle lower than 90° is defined as 
hydrophilic and water contact angle higher than 90° is 
hydrophobic.  However, researchers recently realized that apparent 
contact angles cannot fully describe the interactions between the 
liquid and solid surfaces.  McCarthy and co-workers [1,2] argued 
that contact angle hysteresis, specifically the difference between 
the cosines of the advancing and receding angles, and not 
maximum achievable contact angle should be used to quantify 
hydrophobicity.  The authors also accused some recent published 
papers only reported single water contact angle which cannot fully 
describe the surface wetting properties without additional 
information.  Murase and co-workers [3] showed that a high 
contact angle does not necessarily relate to a low sliding angle.  
Rios etc. [4] also showed that a fluoropolymer with a water contact 
angle of 112° possesses a higher sliding angle than 
poly(dimethylsiloxane) with a contact angle of 103°, even higher 

sliding angle than PMMA and polycarbonate whose contact angles 
are at 72.5° and 81.3° respectively.  

Giving this background and the important of Teflon in the 
printing industry, we decide to carry out a system investigation of 
the surface wetting properties of PTFE towards water, hexadecane, 
and the Xerox imaging materials, solid ink and toner.  Our data 
reveal that, PTFE is hydrophobic, but oleophilic.  PTFE actually 
exhibits moderate to high adhesion towards water, hexadecane and 
the Xerox imaging materials.  In most applications, having a low 
adhesion, non-sticking surface is more critical than having a high 
contact angle.  In this work, we further fabricated a 
superoleophobic model surfaces by photolithography and 
demonstrate its superior release performance relative to PTFE.   

Experimental  
Teflon films (PTFE ~ 50 μm) were obtained from Dalau 

Incorporated (Merrimack, NH, USA) and were cleaned before use.  
The cleaning procedure included ultrasonic bath treatments with 
isopropanol and then acetone at room temperature for 5 min 
followed by drying in an oven for 1 h at 90–100°C.   A model 
superoleophobic surface was created by photolithography by first 
spin-coating photoresist SPR700 on a Si wafer, followed by 
exposure of the resist through a mask, and then developed, etched, 
striped off the remaining resist and piranha clean the surface.  The 
resulting textured surfaces then was modified by tridecafluoro-
1,1,2,2-tetrahydrooctyltrichlorosilane (FOTS) via molecular vapor 
deposition on a MVD100 reactor from Applied Microstructures.  

Contact angle and sliding angle measurements were 
performed on a goniometer model OCA20 from Dataphysics.  The 
drop size of the test liquid was controlled to be ~ 5 μL. The sliding 
angles were measured using the tilting base unit accessory to the 
Dataphysics goniometer. After dispensing a 10 μL droplet, the 
stage was tilted about one degree per second to a maximum of 90°. 
For imaging material, solid ink and toner spheres of ~1 mm in 
diameter were used for both contact and sliding angle 
measurements. The accuracy of contact angles is ±2° and sliding 
angle measurements is ±1.5°. 

Results and Discussion  

Does hydrophobic surface mean low adhesion? Is 
hydrophobic surface also oleophobic? 

Figure 1 shows the contact angle measurements for 5 μL DI 
water and hexadecane drops on a PTFE surface.  The data is 
summarized in Table 1 along with the sliding angle data.  Table 1 
also includes two Xerox proprietary surfaces with slightly lower 
water contact angles (113.0° and 101.0°) and significantly lower 
water sliding angles (5° and 25°). 
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Figure 1. Static contact angle measurements for water and hexadecane 
PTFE. 

Table 1. Summary data of contact angle and sliding angle on 
various substrates for water and hexadecane 

 Contact angle (sliding angle) 

Surface DI water    Hexadecane 
PTFE film 117.7° 

(~64°) 
48.0° 
(~31°) 

Xerox proprietary 
material 1 

113.0° 
(~5°) 

64.0° 
(~4°) 

Xerox proprietary 
material 2 

101.0° 
(~25°) 

33.0° 
(~1°) 

 
Since sliding angle is a measure for adhesion between the 

liquid droplet and the surface [4], our result clearly show that high 
hydrophobicity does not always mean low adhesion. 

Hexadecane is the surrogate for oil.  The data in Table 1 show 
that there is no direct correlation between hydrophobicity and 
oleophobicity.  Equally important is the sliding angle data, a high 
static hexadecane contact angle does not necessarily translate into 
the lowest adhesion, confirming the observation with water.  Work 
is in progress in our lab trying to understand the fundamental as 
well as the design for synthesizing surface with high contact angle 
and low sliding angle. 

Microscopy and property of the model fluorinated 
textured surface 

To extend the range of surface design, we have initiated work 
to explore surface roughness on surface hydrophobicity and 
oleophobicity [5].  Figure 2 shows a SEM micrograph of a 
textured surface consisting of ~ 3 μm diameter pillars ~ 7 μm in 
height with an inter-pillar distance of ~ 6 μm on Si wafer.  The 
surface was chemically modified by a fluorosilane coating (FOTS) 
using the molecular vapor deposition technique.   

 
Figure 2. SEM micrograph of the texture on Si wafer created by 
photolithography 

The surface property was studied by contact angle 
measurements using water and hexadecane (oil) as test liquids.  
The contact angle data for the textured surface are depicted in 
Figure 3.  Sliding angle data and data from all the controls (smooth 
and textured surfaces without FOTS modification) are summarized 
in Table 2. 
 
 
 
 
 
 
 
 
Figure 3. Static contact angle measurements for water and hexadecane on 
the fluorinated textured surface 

Table 2. Contact angle and sliding angle data for smooth and 
textured surfaces 

Si wafer Coating Contact angle (sliding angle) 
Water Hexadecane 

Smooth None - - 
Texture None <5° <5° 
Smooth FOTS 107.3° (14°)  73.3° (9°) 
Texture FOTS 156.2° (10°) 157.9°(10°) 

 
Our results indicated that the textured FOTS surface is both 

water and oil repelling with water and hexadecane contact angles 
approaching ~ 160°.  In addition, the sliding angles are very low, ~ 
10°, for oil and water, indicative of achieving both 
superhydrophobicity and superoleophobicity.  By comparing with 
the contact angle data of the smooth FOTS surface and the 
textured bare Silicon surface, we conclude that the attainment of 
superoleophobicity and superhydrophobicity for the textured 
surface in Figure 2 is the result of both surface texturing and 
surface fluorination. 

The super model surface obviously gives the highest water 
contact angle and very low sliding angle. Although Teflon has 
second highest water contact angle in Table 1 and 2, it has the 
highest sliding angle indicating its strong adhesion with water.  

Hexadecane (surrogate for oil) has the second lowest contact 
angle on PTFE surface in Table 1 and 2.  Its sliding angle on PTFE 
is the highest among all the surfaces studied in this work, 
suggesting the Teflon is actually oleophilic with strong adhesion 
towards oil!  

Will the superoleophobic model surface perform 
better than Teflon?  

Figure 4 shows the contact angle measurements for solid ink, 
waxy polyester toner and polyester toner spheres on the 
superoleophobic model surface, PTFE and transparency (surrogate 
for paper), respectively.  The data are tabulated in Table 3. 
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Figure 4. Static contact angle measurements for solid ink, waxy polyester 
toner and polyester toner 

Table 3. Summary of contact angle and sliding angle data for 
various imaging materials on various surfaces 

 Contact angle (sliding angle) 
Surface Solid ink 

(105°C) 
Waxy 
polyester 
toner (165°C) 

Polyester 
toner 
(165°C) 

Superoleophobic 
(FOTS coating) 

154.9° 
(33°-58°) 

159.4° 
(50°-55°) 

129.6° 
(35°-52°) 

Transparency 
(surrogate for 
paper) 

40.4° 
(>90°) 

65.6° 
(> 90°) 

78.9° 
(>90°) 

Contact angle Δ ~ 114° ~ 94° ~ 51° 

PTFE film 63.2° 
(>90°) 

74.6° 
(>90°) 

84.6° 
(>90°) 

Contact angle Δ ~ 23° ~ 9° ~ 6° 

 
To be able to de-wet, the liquid droplet should have a high 

contact angle on a given surface.  Similarly, a small contact angle 
between a liquid droplet and the surface usually will enable good 
wetting and spreading.  For fusing or transfixing application, in 
order to achieve no offset on the fuser surface, it is desirable for 
the molten toner or ink to have a very high contact angle on the 
fuser surface while wetting the paper at the same time.  In the 
other words, one would like to have a large contact angle on the 
fuser surface and a small contact angle on paper.  The difference in 
contact angle would become a figure-of-merit in fuser/transfuser 
design, the large the contact angle Δ, the better the offset 
performance will be.  As shown in Table 3, the contact angle Δ for 
the superoleophobic surface with the three imaging materials, 
ranges from 51° to 114°, are significantly larger than those 
observed on PTFE.  The results suggest that, if the 
superoleophobic surface can be incorporated in the fusing surface, 
significant improvements in release, offset and paper stripping are 
anticipated.  

Another interesting point is the data between PTFE and the 
waxy polyester toner.  This is the material combination commonly 
used for oil less fusing.  The contact angle Δ for this material 
combination is 9° and is significantly smaller than the 
superoleophobic surface–polyester toner combination, which is 
51°. The large contact angle Δ for the superoleophobic surface 
implies that one may be able to practice oil less fusing with wax 
less polyester toner.   

Performance validation 
To validate the superior performance of the superoleophobic 

surface, we manually simulated the interaction between the fuser 
surface, the molten toner or ink and paper.  In the experiment, a 
molten droplet of ink was created on the two surfaces, PTFE and 
the superoleophobic model surface, a piece of Xerox plain 
uncoated paper was then brought in contact with the molten ink 
drop slowly and carefully while video of the entire event was 
recorded.  Figure 5 depicts the frame-by-frame of the ink offset 
experiment for the two surfaces. The solid ink drop was found to 
split between the PTFE surface and paper, implying offset would 
likely to occur if this is a fusing experiment.  In contrast, the ink 
drop was found behaves very differently.  Upon contact, the ink 
drop just “jumps” onto the paper without leaving any residues 
behind.   

 
 
 
 
 
 
 

 
Figure 5. Simulated interactions of the molten ink drop with Xerox plain paper 
(top) a PTFE film; and (bottom) the model superoleophobic surface 

Concluding Remarks  
In contrast to common belief, this work demonstrates that 

Teflon materials, although hydrophobic, it is actually oleophilic 
and exhibits high adhesion towards water, hexadecane (oil) and 
imaging materials, such as ink and toner.  Yes, we do need better 
release surface than Teflon.  In this work, we have fabricated a 
model superoleophobic surface that displays extremely high water 
and oil repellency.  The surface exhibits contact angles at ~ 160° 
and sliding angles ~ 10° with both water and oil.  Static and 
dynamic contact angle measurements of the surface with toner and 
ink suggest that the surface should performance much better than 
Teflon if the texture design is incorporated in the surface of an oil 
less fuser. 
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